a) Dados los planos:

$$x = 3 + 2\lambda + 2\mu$$

 π_1 : $x - 2y + 2z - 1 = 0$ π_2 : $y = 2\lambda - 2\mu$
 $z = 1 + \lambda - 3\mu$

estudia su posición relativa y calcula la distancia entre

b) Dado el punto P(2, 1, 7), calcula su simétrico respecto al plano π_2 .

(Galicia. Septiembre 2008. Bloque 2. Opción 2)

68 Hallad la distancia entre el punto (1, -1, 1) y el plano que pasa por los tres puntos (0, 1, 1), (1, 0, 1), (1, 1, 0).

(La Rioja. Septiembre 2008. Propuesta A. Ejercicio 4)

69 Calcular los puntos de la recta $\frac{x+2}{3} = \frac{y}{-1} = \frac{z}{2}$ que están a distancia 1 del plano x + y + z = 0.

(Baleares. Septiembre 2007. Opción B. Cuestión 2)

- \overline{w} a) Determina la posición relativa del plano x y + z = 2y la recta de ecuaciones $\frac{x}{2} = \frac{y+1}{1} = \frac{z+2}{-1}$. b) Calcula la distancia entre la recta y el plano anteriores.

(Extremadura. Septiembre 2007. Opción B. Ejercicio 4)

Dados el plano:

$$\pi_1: X + y + z = 1$$

$$r: \frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{-4}$$

se pide:

- a) Hallar el punto P determinado por la intersección
- b) Hallar un plano π_2 paralelo a π_1 y tal que el segmento de la recta r comprendido entre los planos π_1 y π_2 tenga longitud √29 unidades.

(Madrid. Septiembre 2008. Opción B. Ejercicio 2)

$\overline{2}$ Calcular la distancia entre las rectas r y s, donde:

$$x = 2 + 2k$$

 $r: y = 1 - k$
 $z = 3 + k$
 $x = -1 + k$
 $x = -1 + 3k$
 $x = -1 + 3k$
 $x = -1 + 3k$

(Aragón. Junio 2006. Opción A. Cuestión 4)

Estudie si las rectas siguientes se cruzan, se cortan, son paralelas o son coincidentes y calcule la distancia entre ellas.

$$r_1: \frac{x-1}{2} = \frac{y+2}{3} = 1 - \frac{z}{2}$$
 $x = \lambda$
 $r_2: y = 1 + \frac{3\lambda}{2}$
 $z = 2 - \lambda$

(Murcia. Septiembre 2007. Bloque 2. Cuestión A)

- \overline{a} a) Determina la ecuación de un plano α pasando por el punto A(-1, -1, 1) y siendo $\vec{v} = (1, -2, -1)$ un vector normal al mismo.
 - b) Determina las ecuaciones paramétricas de la recta rque se obtiene al cortarse el plano del apartado anterior con el plano β : z - 1 = 0.
 - c) Determina las ecuaciones paramétricas de la recta s que pasa por los puntos B(1, 1, 2) y C(1, -1, 2).
 - d) Encuentra la posición relativa entre las rectas r y s de los apartados anteriores.
 - e) Halla el punto D de la recta r que esté a la misma distancia de los puntos B y C.

(Cantabria. Junio 2006. Bloque 3. Opción A)

\times 75 Se consideran las rectas r y s de ecuaciones respectivas:

$$r: \begin{cases} y = 1 \\ z = 0 \end{cases} \qquad s: \begin{cases} x = 0 \\ z = 2 \end{cases}$$

- a) Estudiar la posición relativa de r y s.
- b) Hallar la recta que corta perpendicularmente a r y s.
- c) Hallar la distancia entre r y s.

(Castilla y León. Septiembre 2008. Prueba B. Problema 1)

$\sqrt{3}$ Dados los dos planos π_1 : x + y + z = 3 y π_2 : $x + y + \alpha z = 0$, se pide calcular razonadamente:

- a) El valor de α para que los planos π_1 y π_2 sean perpendiculares y, para este valor de α , obtener las ecuaciones paramétricas de la recta intersección de esos dos planos.
- b) El valor de α para que los planos π_1 y π_2 sean paralelos y, para este valor de α , obtener la distancia entre los dos planos π_1 y π_2 .

(C. Valenciana. Septiembre 2008. Bloque 2. Problema 1)

olimits Hállese la distancia entre el plano π, que pasa por los puntos A(2, 0, -1), B(0, 0, 0) y C(1, 1, 2), y el plano β de ecuación x - 5y + 2z - 6 = 0.

(Castilla y León. Junio 2006. Prueba B. Cuestión 2)

Considera los planos siguientes:

$$\pi_1$$
: $x - y + z = 0$ π_2 : $x + y - z - 2 = 0$

- a) Determina la posición relativa de los planos dados.
- b) Halla una ecuación de la recta que pasa por el punto A(1, 2, 3) y no corta a los planos π_1 y π_2 .
- c) Calcula un punto de la recta s: x = 0 de A(1, 2, 3) y B(1, 1, 2). y = z que equidiste

(Cantabria. Septiembre 2008. Bloque 3. Opción A)

Calcúlese la distancia del punto P(1, 1, 1) a la recta:

$$x = -2 + 2\lambda$$

$$r: y = 0$$

(Castilla y León. Junio 2006. Prueba A. Cuestión 2)