Discute en función de los valores de a, y resuelve, en los casos en los que sea posible, el siguiente sistema de ecuaciones lineales:

$$x - y - az = 1$$

$$-3x + 2y + 4z = a$$

$$-x + ay + z = 0$$

La Rioja. Junio 2007. Propuesta B. Ejercicio 4)

Discute, según los valores del parámetro a, el sistema:

$$x + y + z = a$$

 $x + (1+a)y + z = 2a$
 $x + y + (1+a)z = 0$

La Rioja. Junio 2005. Propuesta B. Ejercicio 5)

Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible.

$$x - az = -1$$

 $x + (a + 3)y + (4 - a)z = 0$
 $x + (a + 3)y + (a^2 + 2)z = a + 2$

(Wavarra. Junio 2007. Grupo 1. Opción A)

Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real *a* y resuélvelo en los casos en que es compatible.

$$x + 2y + az = 0$$

 $ax + (3a - 1)y + (1 + a^{2})z = 2$
 $x + 2y + (a^{2} - a)z = a - 2$

(Mavarra. Septiembre 2007. Grupo 1. Opción A)

Dado el sistema de ecuaciones:

$$(m-1)x + y + z = 3$$

 $mx + (m-1)y + 3z = 2m-1$
 $x + 2y + (m-2)z = 4$

- Discutirlo según los distintos valores de m.
- Resolverlo cuando sea compatible indeterminado.

(Madrid. Junio 2005. Opción A. Ejercicio 3)

Decide para qué valores de *k* el siguiente sistema de ecuaciones es compatible indeterminado y resuélvelo en ese caso.

$$kx + (1-k)y + (2-k)z = 0$$

 $x + y + z = 0$
 $kx + y + kz = 0$

Baleares. Junio 2006. Opción A. Cuestión 1)

Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro *a* y resuélvelo en los casos en que es compatible.

$$\begin{cases}
 x + y + & = 2 \\
 2x + 4y + & az = 7 \\
 x + 3y + (a^2 + a - 1)z = 2a + 3
 \end{cases}$$

(Wavarra. Junio 2005. Grupo 1. Opción A)

69 Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro *a* y resuélvelo en los casos en que es compatible.

(Navarra. Septiembre 2005. Grupo 1. Opción A)

70 Sea S el sistema de ecuaciones lineales:

$$x + y + z = 0$$

$$Ax + 3y + 2z = 3$$

$$2x + 2y + z = A$$

Estudiar la compatibilidad del sistema en función de A. Resolver para A=5.

(País Vasco. Junio 2007. Bloque A. Problema A)

Discútase, en función del parámetro real *k*, el siguiente sistema de ecuaciones lineales:

$$kx + 3y = 0$$
$$3x + 2y = k$$
$$3x + ky = 0$$

Resuélvase el sistema cuando sea posible.

(Castilla y León. Septiembre 2006. Prueba B. Problema 1)

Se considera el sistema de ecuaciones lineales:

$$S = \begin{cases} x + 2y + 3z = 6\\ 2x + 3y + 4z = 9\\ 3x + 4y + mz = 2(m+1) \end{cases}$$

¿Existe algún valor de *m* para el cual el sistema sea compatible indeterminado? En caso negativo razonar la respuesta. Si la respuesta es positiva hallar la solución del sistema en ese caso.

(País Vasco. Junio 2006. Bloque A. Problema A)

Discutir y resolver el siguiente sistema según los valores del parámetro m.

$$x-2y+z=0$$

$$4x-2y-3z=-5$$

$$3x-y+mz=m-1$$

(Canarias. Junio 2006. Opción A. Cuestión 3)

Dado el sistema homogéneo:

$$\begin{aligned}
x + ky - z &= 0 \\
kx - y + z &= 0 \\
(k+1)x + y &= 0
\end{aligned}$$

Averiguar para qué valores de k tiene soluciones distintas de x = y = z = 0. Resolverlo en tales casos.

(Madrid. Junio 2006. Opción A. Ejercicio 1)